

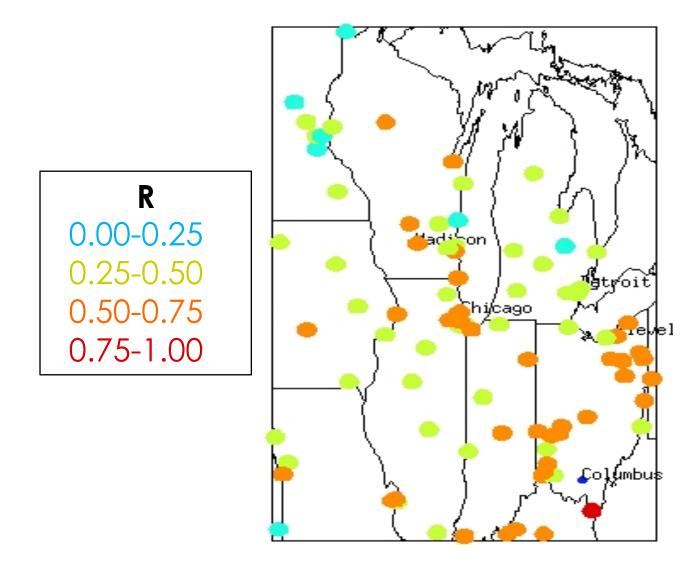
Converting AOD to PM_{2.5}: a Statistical Approach

Pawan Gupta, Melanie Follette-Cook, and Bryan Duncan

NASA Remote Sensing for Air Quality Applications, March 20-23, 2018, Jakarta, Indonesia

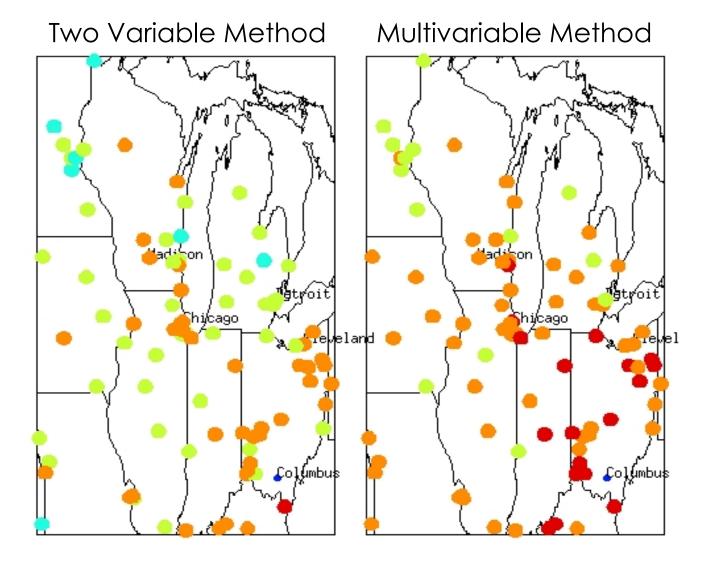
Objective

- By the end of this exercise, you will be able to
 - convert satellite derived aerosol optical depth into surface level $PM_{2.5}$ mass concentration using a statistical approach



Exercise 1: Converting AOD to $PM_{2.5}$

Required Data


- PM_{2.5} mass concentration from ground monitors
- Satellite-derived aerosol optical depth
- Meteorological fields (only if working with a multi-variable method)

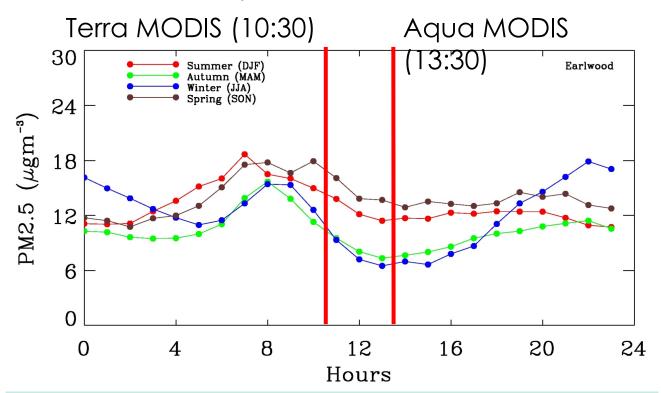
Correlation Between PM_{2.5} and AOD

Correlation Between PM_{2.5} and AOD

R 0.00-0.25 0.25-0.50 0.50-0.75 0.75-1.00

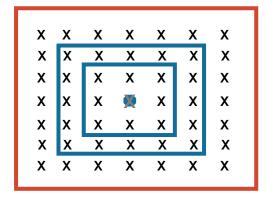
Step 1: Getting Satellite and Surface Data

- Obtain MODIS AOD data file from a NASA data server for your region, date, and time of interest
 - https://ladsweb.modaps.eosdis.nasa.gov/
 - from earlier exercise
- To get PM_{2.5} for your region:
 - For U.S. Data: http://www.epa.gov/airdata/ad_maps.html
 - Global Air Quality Monitoring System: http://aqicn.org
 - Global open data: http://openaq.org
 - Your own data source or measurements


Step 2: Collocating Satellite and Surface Data

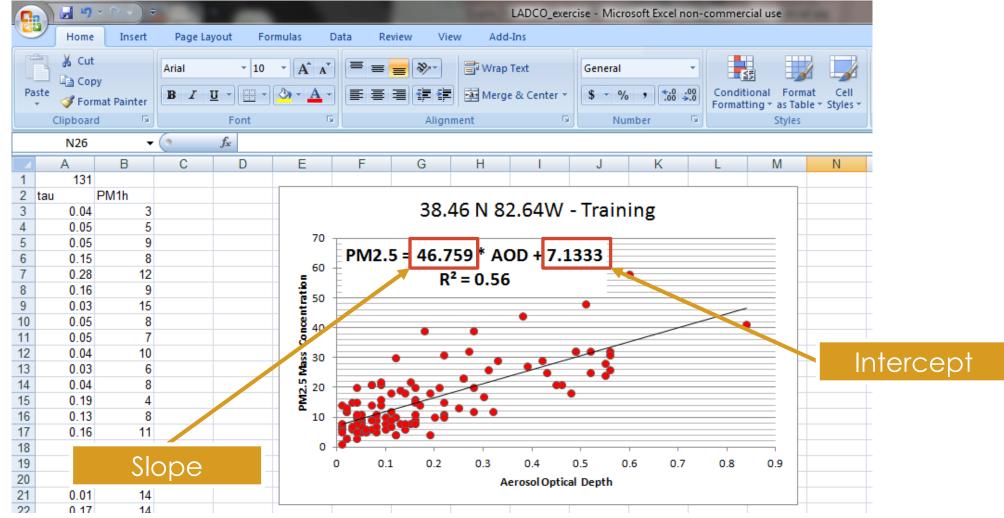
- Run IDL, Matlab, HDFLook, Python, etc. code to obtain AOD at the location of the $PM_{2.5}$ ground monitor
 - Python scripts: https://arset.gsfc.nasa.gov/airquality/python-scripts-aerosol-data-sets-merra-modis-and-omi
 - IDL code:

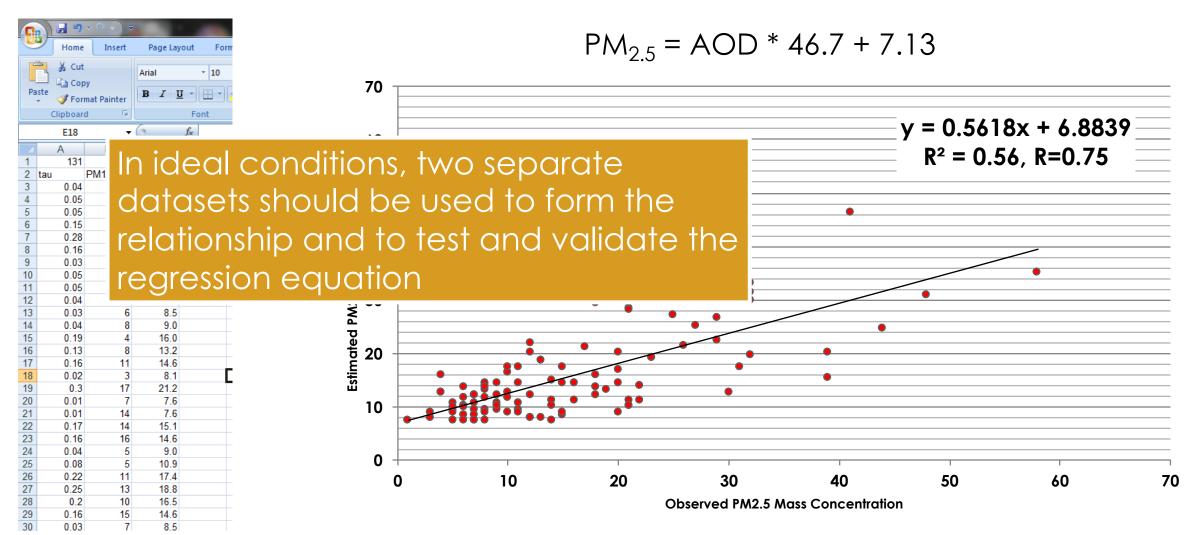
http://arset.gsfc.nasa.gov/sites/default/files/airquality/workshops/Santa_Cruz_20 13/read_mod04_map_aqc.zip


Step 2: Collocating Satellite and Surface Data

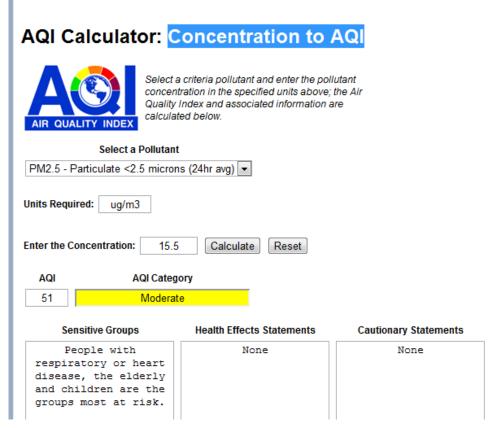
Temporal Collocation

pick the closest $PM_{2.5}$ measurement from ground to satellite overpass time

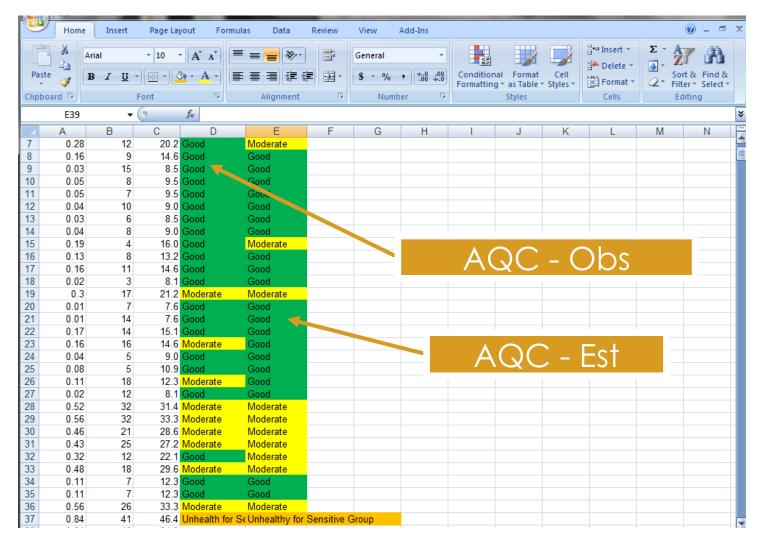

Spatial Collocation


pick the nearest pixel or average over 3x3 or 5x5 pixels

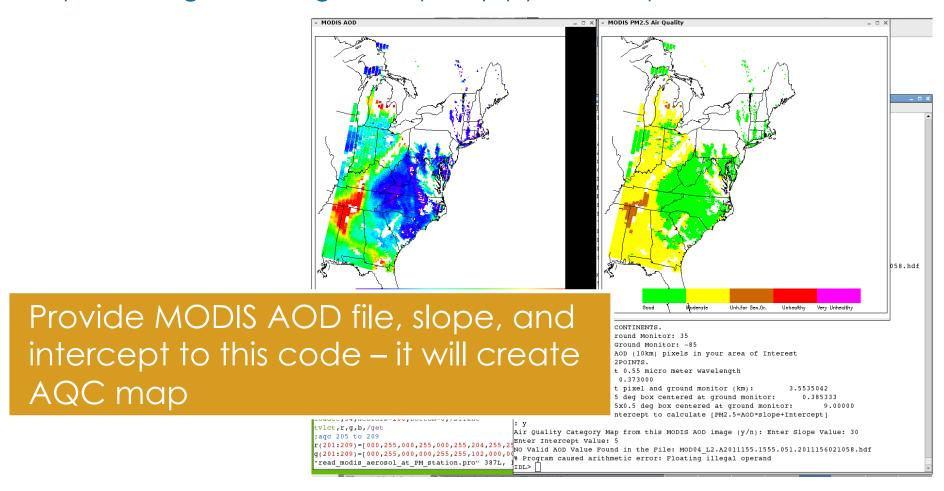
Step 3: Developing a Relationship Between AOD & PM_{2.5}


Step 4: Estimating PM_{2.5} from Satellite AOD

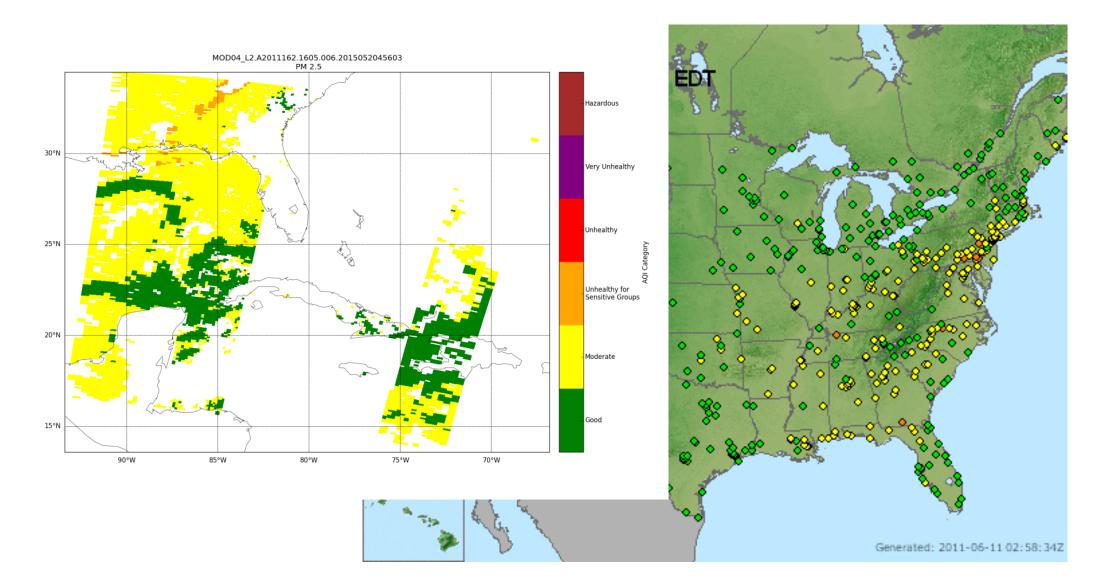
Step 5: PM_{2.5} to Air Quality


Category	AQI Estimated 24-hour avg. µg/m³			
Good (0 - 50)	0 to 15.4			
Moderate (51 - 100)	15.5 to 40.4			
Unhealthy for Sensitive Groups (101 - 150)	40.5 to 65.4			
Unhealthy (151 - 200)	65.5 to 150.4			
Very Unhealthy (201 - 300)	150.5 to 250.4			
Hazardous (301 - 500)	>250.4			

Online Tool

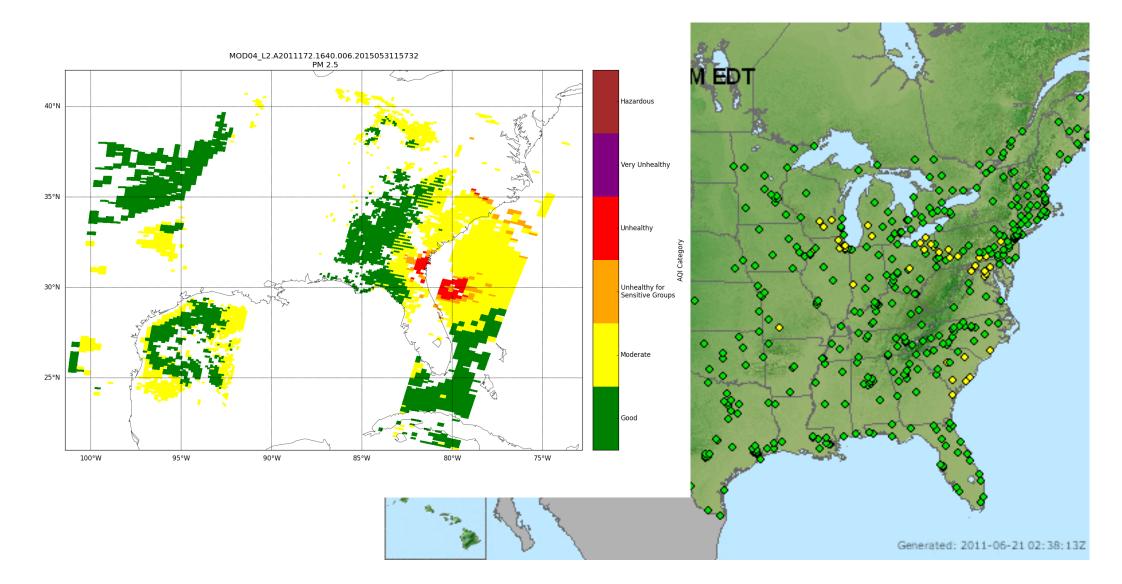

This is based on the U.S. EPA's definition of AQI, which can be different in other countries

Step 5: PM_{2.5} to Air Quality

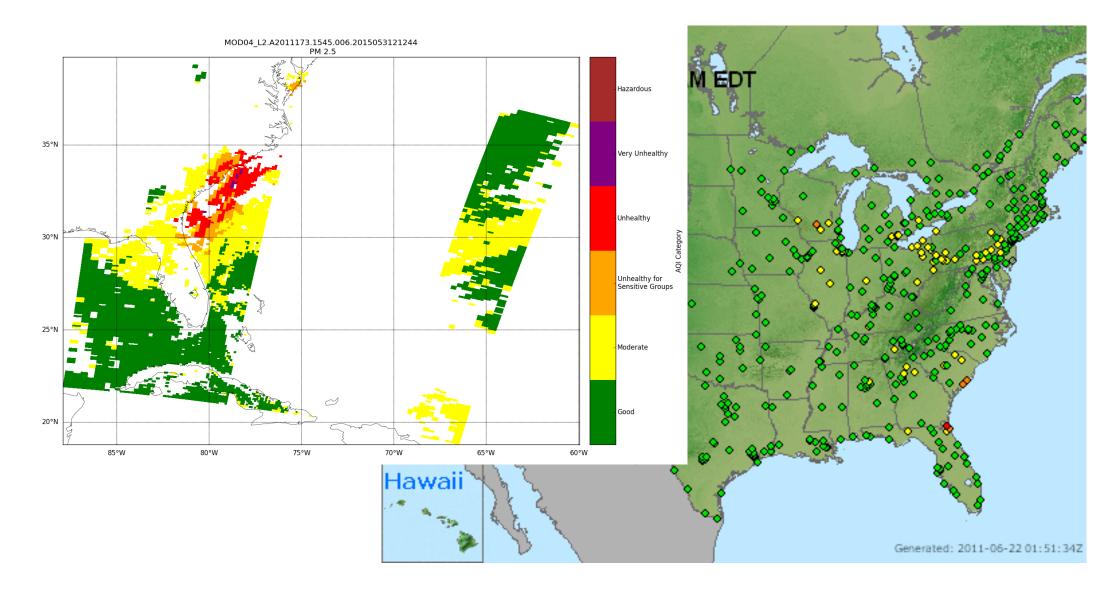


Creating an Air Quality Category Map Python/IDL Tool

http://arset.gsfc.nasa.gov/airquality/python-scripts-aerosol-data-sets-merra-modis-and-omi



June 10, 2011

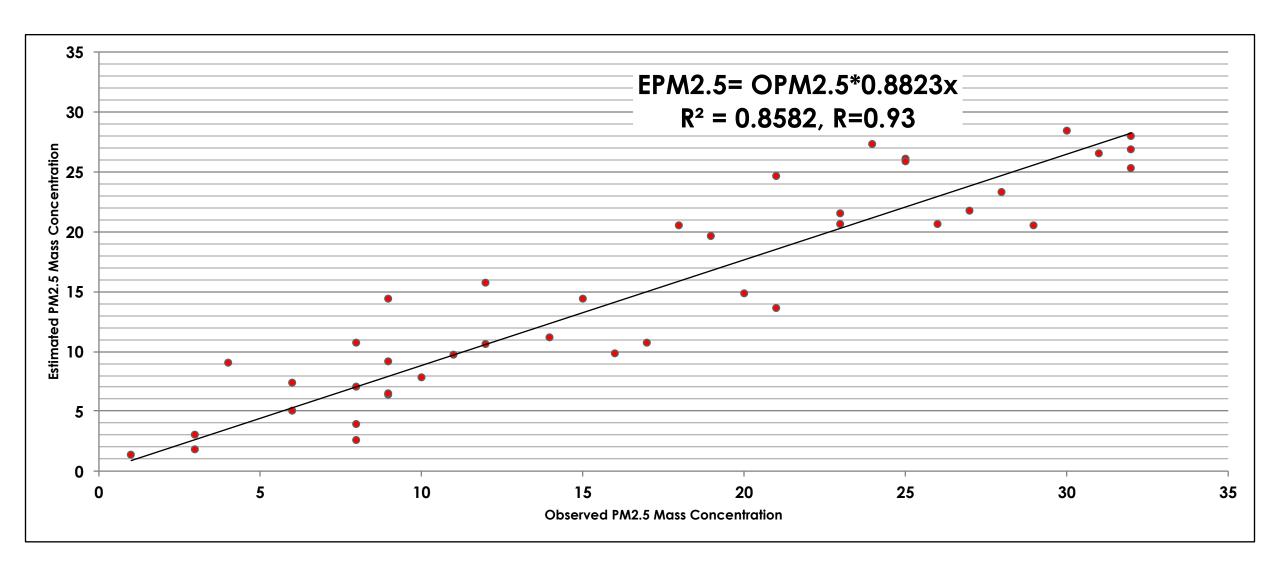


June 10, 2011

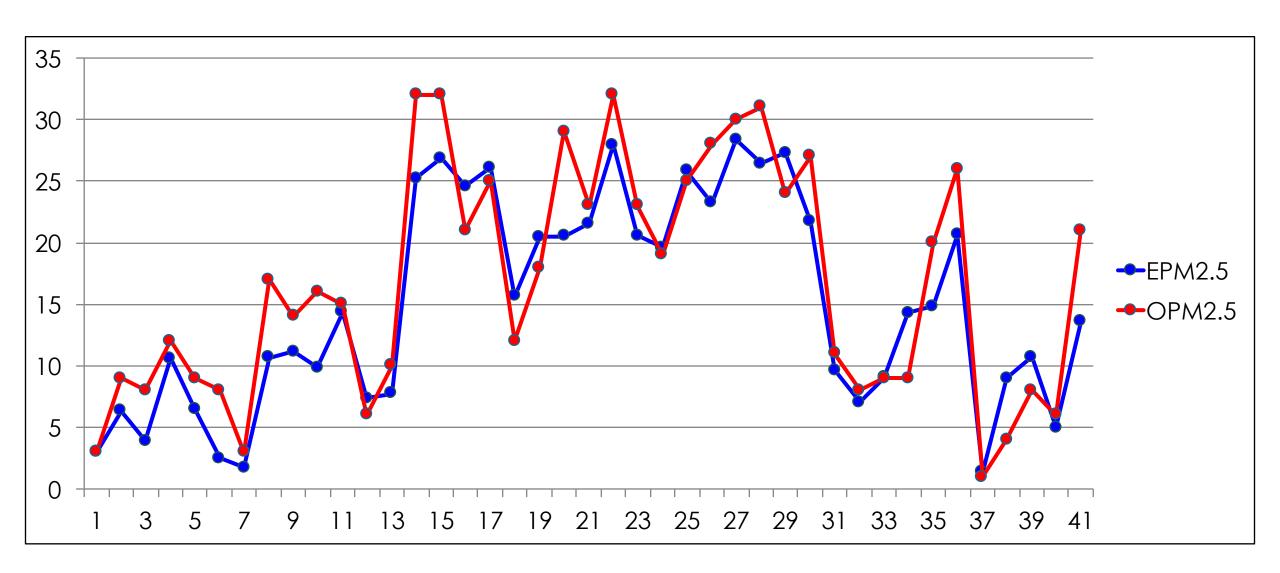
June 21, 2011

Multiple Linear Regression Method

$$PM_{2.5} = \beta_0 + \alpha \times \tau + \sum (\beta_n \times M_n)$$


- This method requires AOD, meteorological fields, more data processing, and more expertise
- Most of the time this produced a more accurate $PM_{2,5}$ estimation

Multiple Linear Regression Models


AOD, $PM_{2.5}$, and Meteorological Data

	Ciipboai	u 🦠		FUIL		-] [Align	ment		j Nur	nper	14][Styles
	N3	•	• (9	f _{sc} =17.0	=17.02*A3+1.14*D3-0.92*E3+0.44*F3-0.95*G3+1.04*H3-0.04*I3-0.31*J3-0.031*K3-0.0022*L3-177.26							3-177.26	
4	С	D	Е	F	G	Н		J	K	L	IVI	N	U
1	atitude = 38	3.46, Longit	ude = -82.6	4									
2	PM1h	tmp0	tmp1000	tmp700	rh0	rh1000	rh700	ws0	ws925	hpbl		EPM2.5	
3	3	277.47	277.4	266.05	71.26	71	70.32	4.14	16.22	63.33		2.995254	3
4	9	287.25	285.97	270.8	28.95	29.41	39.34	2.76	1.41	623.5		6.35489	
5	8	274.13	273.1	260.93	63.01	63.56	17.28	4	8.79	675.67		3.911136	
6	12	287.43	286.53	269.72	46.23	46.52	23.82	3.64	9.04	800.67		10.58439	3
7	9	275.9	275.85	264.3	59.98	60.34	11.2	3.39	5.76	53		6.47774	
8	8	283.18	281.67	265.93	35.44	35.57	79.54	0.65	2.47	676.83		2.494904	.5
9	3	286.07	283.98	265.25	36.55	36.66	42.77	4.46	9.49	1325.83		1.748084	S Gnoentration 5
10	17	297.03	297.98	275.33	52.06	51.57	81.85	4.04	13.09	925.5		10.67131	T T
11	14	296.88	294.37	274.78	29.43	29.35	27.39	2.18	6.37	1633.33		11.1627	2
12	16	297.05	295.72	275.03	25.06	25.43	44.91	4.98	16.45	914.83		9.828424	8 2
13	15	299.85	297.52	275.25	42.4	42.92	42.66	3.17	6.19	1281.5		14.36151	ass
14	6	289.07	287.65	269.45	57.64	58.14	68.48	4.43	34.55	478.83		7.372424	Σ
15	10	295.3	293.57	273.68	42.91	43.34	88.06	3.94	17.43	1226		7.74657	Ų 1
16	32	301.9	299.88	282.63	51.67	51.79	32.02	2.83	9.8	585.17		25.24983	Etimated PM2.5 Mass
17	32	303.42	300.45	282.27	50.19	50.36	23.46	2.64	6.74	833.5		26.84926	led .
18	21	299.68	297.82	279.97	80.46	80.25	68.37	2.38	6.51	75		24.58039	Ē 1
19	25	304.13	301.87	283.48	64.15	64.42	31.91	3.5	6.1	541.17		26.09083	, t
20	12	295.48	295.2	276.62	64.84	63.68	18.02	4.36	6.28	849.83		15.65489	
21	18	300.6	297.15	276.12	45.32	45.23	21.52	1.03	2.05	1799.67		20.49068	
22	29	302.4	299.1	279.78	60.49	60.86	47.22	3.41	5.88	1457.67		20.51765	
23	23	303.7	300.62	282.55	60.82	60.86	12.18	2.56	6.53	1655.67		21.5245	
24	32	307.48	303.73	284.97	63.16	63.1	57.85	1.99	6.4	969.83		27.92127	
25	23	306.27	304.75	282.85	59.03	58.51	43.11	2.42	6.73	880.5		20.54857	
26	19	307.38	304.78	283.63	51.07	51.09	34.56	4.67	7.7	777.83		19.60247	
27	25	306.15	303.15	283.25	60.33	60.41	56.95	4.62	6.13	953.83		25.84764	
28	28	304.92	303.35	283.4	63.96	63.78	81.48	2.4	6.46	1561.83		23.25351	
29	30	302.98	302.9	281.58	59.39	59.84	94.25	3.08	6.66	1391.33		28.37551	
30	31	301.35	300.05	282.43	60.76	60.4	33.71	2.94	7.29	89.33		26.44508	
31	24	305.43	302.2	280.67	55.96	56.51	23.92	2.29	3.24	1058.83		27.27383	
22	27	204.4	300 43	204 02	EC 77	E7 0	ວວ ງງ	4.04	10.04	E27 G		24 74764	

Multiple Linear Regression Method Results

Multiple Linear Regression Method Results

!! CAUTION !!

- Regression analysis provides the first approximation of surface $PM_{2.5}$ mass concentration and air quality
- Its accuracy depends on training data and varies in space and time
- Careful data quality control, testing, and validation should be performed before using this method for quantitative analysis
- Works best when the boundary layer is well mixed, there is no significant aerosol aloft, and in small particle dominated regions

Existing Data Satellite Based Sets for CONUS

- IDEA
 - https://www.star.nesdis.noaa.gov/smcd/spb/aq/
- e-IDEA
 - https://www.star.nesdis.noaa.gov/smcd/spb/aq/eidea/
- ASDP
 - https://asdp.airnowtech.org/about.php
- Dalhousie
 - http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
- Smog Blog
 - http://alg.umbc.edu/usaq/